由5个卷积层块(2个单卷积层,3个双卷积层),3个全连接层组成——VGG-11
from mxnet import gluon,init,nd,autogradfrom mxnet.gluon import nn,lossdef vgg_block(num_convs, num_channels): blk = nn.Sequential() for _ in range(num_convs): blk.add(nn.Conv2D(num_channels,kernel_size=3,padding=1,activation='relu')) blk.add(nn.MaxPool2D(pool_size=2,strides=2)) return blkconv_arch = ((1,64),(1,128),(2,256),(2,512),(2,512))def vgg(conv_arch): net = nn.Sequential() # 卷积层 for (num_convs,num_channels) in conv_arch: net.add(vgg_block(num_channels,num_channels)) # 全连接层 net.add(nn.Dense(4096,activation='relu'),nn.Dropout(0.5), nn.Dense(4096,activation='relu'),nn.Dropout(0.5), nn.Dense(10) ) return netnet = vgg(conv_arch)net.initialize()X = nd.random.uniform(shape=(1,1,224,224))for blk in net: X = blk(X) print(blk.name,'output shape:\t',X.shape)
输出形状。